

UPPER SCHOOL

COMPUTER SCIENCE
CURRICULUM

Address

Phone

Online

Cary Academy

1500 N. Harrison Ave.

Cary, NC 27511

Administration: (919) 677-3873

Middle School: (919) 228-4600

Upper School: (919) 228-4544

 Email: info@caryacademy.org

 Website: www.caryacademy.org

Upper School Curriculum
Computer Science: CSP 101:
Introduction to Programming

CSP 105: INTRODUCTION TO PROGRAMMING
This course introduces students to basic programming structures and skills as they relate to the object-oriented programming
languages. This course will emphasize a strong ability to utilize basic programming control structures and data types while
exposing student to more advanced programming concepts. The focus language for this class is C#.

GENERAL COURSE OBJECTIVES:

 Introduce students to programming using C#
 Recognize and implement good development habits: start with an algorithm, program incrementally to test and

troubleshoot as programs are developed.
 Expose students to software applications written for text console, windows desktop and web browser.
 Allow for future growth at an individual level, especially for those who have mastered a current topic of study.

GENERAL COURSE OUTLINE:

UNIT CONCEPTS
History of Electronic Computing Quick introduction to the history of electronic computing.

From mechanical tabulators to electro-mechanical special
purpose computational devices to modern electronic
computers

Algorithm and Flowcharts basics Introduction
Visualizing problems using decision trees and tables

C# Basics: Variable, Types and Operators Introduction to C# language
Variables
Types
Declaration
Initialization
Math and Logical Operators

Program Flow Control if/else, switch and for, for each, while and do-while loops

Introduction to Methods and Functions Methods and Functions
Code re-use
Arguments, Parameters and Return Values.
Overloaded Methods

Arrays Basics of Arrays and Collections
Storing and Sorting
Two-Dimensional Arrays
Nested Loops

Introduction to Windows Desktop Development Basics of Windows Forms
Event driven programming
Using Windows Controls.

Classes and Objects Object-oriented Programming Concepts

Understanding of Classes and Objects.
Inheritance and Polymorphism

Introduction to Web Development Basics of Web Development
HTML 5
CSS
Java Script
Using C# developing simple Web Apps

Upper School Curriculum
Computer Science: CSP155:
Computer and Network Essentials

CSP 105: INTRODUCTION TO PROGRAMMING
This course introduces students to basic programming structures and skills as they relate to the object-oriented programming
languages. This course will emphasize a strong ability to utilize basic programming control structures and data types while
exposing student to more advanced programming concepts. The focus language for this class is C#.

GENERAL COURSE OBJECTIVES:
Have the core knowledge base to take the CompTIA A+ Certification tests

 There are two tests for the CompTIA A+ certification
 220-901

Covers PC hardware and peripherals, mobile device hardware, networking and troubleshooting hardware and network
connectivity issues. (https://certification.comptia.org/certifications/a)

 220-902
Covers installing and configuring operating systems including Windows, iOS, Android, Apple OS X and Linux. It also
addresses security, the fundamentals of cloud computing and operational procedures.
(https://certification.comptia.org/certifications/a)

Learn various problem formulation and problem solving skills.
 Material used to achieve this goal will be based on the theories, literature and practices of Dr. David Jonassen from the

University of Missouri and Douglas Lecorchick and Dr. Matthew Lammi of North Carolina State University.
 The goal is to employ the various theories, literature and practice to observe students’ responses. After observing and

analyzing how students learn problem formulation and problem solving, we will continue to redesign the process to see
what the students feel helped them achieve overall success.

 In combining and redesigning the problem formulation and problem solving skills, we hope students will be able decide
for their own learning what works best for them. Students should not be stuck using one model when various models or a
combination of models might work best for their own learning.

 This could be time consuming for the instructors teaching this curriculum. However, through various labs and observations
instructors should find this goal achievable. Instructors should anticipate to learn their own problem formulation and
problem solving skills to help students achieve a more critical thinking process.

Learn various design thinking processes, to then apply them to problem formulation.
 Three design thinking models will be taught, so students can apply solutions to the problems that they might encounter in

a lab setting or in real world experiences.
 The three models to be used will the IDEO, Stanford d.School and the NASA Engineering Design Process.

STANFORD D.SCHOOL IDEO NASA ENGINEERING DESIGN PROCESS

Empathize Discovery Identify the Problem

Define Interpretation Identify Criteria and Constraints

Ideate Ideation Brainstorm Possible Solutions

Prototype Experimentation Generate Ideas

Test Evolution Explore Possibilities

 In combining and redesigning the processes above, we hope students will be able decide for their own learning what

works best for them. Students should not be stuck using one model when various models or a combination of models
might work best for their own learning.

In learning the above overall goals, the students’ critical thinking skills will be demonstrated through various lab settings and
problem based learning scenarios in collaborative groups. Many problems encountered outside the classroom take a
collaborative effort and students must learn that they need to rely on the thoughts and ideas of others to help solve a problem.

SCOPE AND SEQUENCE:
Computer and Network Engineering (CANE) Class will have the scope and sequence:

 Select an Approach

 Build a Model or Prototype

 Refine the Design

UNIT TARGETED SKILLS
Knowledge to Pass the CompTIA A+
Certification Tests

 Work on labs to apply different Design Thinking models.
 Compare the design thinking models and see if they can make their own

or use one that already exists.
 Design Thinking model they come up with will then be used throughout

the course for the year.
 Have students work on computer issues to come up with a problem

formulation and compare that to the Comp TIA A+ objectives.
 Analysis different problem formulation models and see what works best

for that student.
 Come up with a problem formulation map to use for course throughout

the year.
 Above skills will be assessed by the instructor through the various

collaborative labs and individual problem formulation scenarios.
Learn Design Thinking and Problem
Formulation skills

 Acquire the knowledge to build a computer on their own or as a group
and identify the various parts needed to build the computer.

 Work on what the computer design will be and what parts they need to
build the computer.

 Price out various computers to compare a high, medium and low cost
computers.

 Work on a budget set by the instructor to build a computer and order the
parts needed for that computer.

 Figure out what operating system to install on the computer and install
the operating system on their own or as a group.

Learn to build a computer and how the
hardware and software interacts

 Look various coding languages.
 Learn basic programming structure.
 Apply programing structure to a problem and use the computer they built

to code with.
 Students will have a problem set or real world example to solve with basic

command programing.
Learn Basic Command Prompts and
Coding

 Learn the different networking topologies.
 Setup a closed network and have several computers networked together.
 Make their own network cables to have the computers talk to each other.
 Setup a basic router to have computers networked.

Networking Build a robot that will apply the above units and skill sets.
 Use Design Thinking and Problem formulation skills to have a set plan in

place for building the robot.
 Build circuitry and other components so the robot can have an onboard

computer.

 Use basic programming to have the robot do certain objectives.

Upper School Curriculum
Computer Science: CSP201:

Intermediate Programming

This course will delve fully into the Java programming language. Student's will continue to build on the skills learned in the
Intro to Programming courses while continuing to learn about advanced data structures, algorithm designs, and object-
oriented programming. Prerequisite: CPS105: Intro to Programming.

GENERAL COURSE OBJECTIVES:

 Reinforce and strengthen fluency of concepts acquired in CPS105: Intro to Programming.
 Recognize and implement good development habits: start with an algorithm, program incrementally to test and

troubleshoot as programs are developed.
 Encourage individual exploration of other languages or topics during times such as Computer Science Week or in breaks

between units.
 Allow for growth at an individual level, especially for those who have mastered a current topic of study.

GENERAL COURSE OUTLINE

UNIT TARGETED SKILLS
Java Basics Input and output in Java

 Variables and arithmetic operators
 Boolean variables and control structures

Java Prebuilt Methods Math Class
 Formatting output
 Random numbers
 Character Class
 String Class
 GUI Basics

Text Files Creating and writing to text files
 Reading from a text file
 Appending to a file
 File existence
 String class and files

Java Methods Increasing efficiency and elegance
 Passing parameters
 Return methods

Arrays Creation & navigation
 Copying & manipulation
 Searching
 Sorting
 Passing Arrays

Two-dimensional Arrays Setup & Syntax
 Navigation & manipulation with nested loops

Object Oriented Programming (OOP) Creating classes
 Constructors
 Creating Objects
 Overloaded methods
 Class variables
 Class methods

Intermediate OOP Encapsulation
 Design considerations
 Instance variables and using 'this'

Arrays and Classes Using arrays with and in classes
 Arrays of objects
 For each loop

ArrayLists ArrayList class
 ArrayLists versus standard arrays
 LinkedList class

Recursion Introduction to theory
 Tracing examples of recursion
 Comparing recursive and iterative solutions

Advanced OOP Inheritance
 Polymorphism
 Abstract methods
 Interfaces

GUI Programming Basics Event driven programming basics
 JFrame class
 Java components
 Listeners
 Inner classes
 Layout managers

Upper School Curriculum
Computer Science: CPS303:
E-imacs Ap Computer Science

Students enrolled in ADV Computer Science at Cary Academy will take a course online through the Institute for Mathematics &
Computer Science. From their course catalog: The course can be completed in eight months, allowing students time to review
for and take the AP exam. Not only does the course cover all the contents required for the AP exam, but it also contains
optional sections covering more advanced topics. Interspersed within a well-organized exposition are exercises to be
completed using an embedded Java compiler, graded coding activities, eight labs, and graded tests. Prerequisites: CPS201:
Intermediate Programming.

GENERAL COURSE OUTLINE

UNIT TARGETED SKILLS
Java Basics Variable and Expressions

 Program Control
 Methods

Object-oriented Programming Object-oriented Programming Concepts
 Simple Objects
 Inheritance and Polymorphism
 Class Definitions Revisited
 Abstractions

Algorithms Introduction
 Searching and Sorting
 Program Analysis

Advanced Topics Introduction
 Searching and Sorting
 Program Analysis
 Data Structures

Java Basics Variable and Expressions
 Program Control
 Methods

Upper School Curriculum
Computer Science: CPS405:
Advance Studies In Computer Science Adv

Structured similarly to an independent study, Advanced Studies in Computer Programming provides student the opportunity
to further their knowledge in a topic agreed upon by the student and IS sponsor. Topics may focus on learning different
programming languages, computer hardware, network infrastructure, or application development. Students may also choose
to pursue an industry recognized certification from Microsoft, Cisco, CompTIA, and more. Meeting times will work around a
student’s class schedule and may contain an online component dependent of topic of study.

GENERAL COURSE OBJECTIVES

 Design a course of study based on individual interests within computer science.
 Develop a year-long or trimester-long project plan(s) based on the individual's proposed area of study.
 Schedule a set of manageable goals and define success for themselves.
 Critique and defend individual projects based on goals and success markers.
 Utilize design and computational thinking as guides for the creation and evaluation process.

GENERAL COURSE OUTLINE:

TRIMESTER 1
 Identify areas of interest.
 Research topics of interest.
 Define project and timeline.
 Set goals and determine definition

of success.
 Design and implement according

to timeline.
 Present and defend project for

critique.

TRIMESTER 2
 Translate critique into actionable

items.
 Differentiate and select items to be

examined further.
 Edit timeline, goals, and definition

of success.
 Design and implement according

to timeline.
 Present and defend project for

critique.

TRIMESTER 3
 Translate critique into actionable

items.
 Differentiate and select items to be

examined further.
 Edit timeline, goals, and definition

of success.
 Design and implement according

to timeline.
 Present and defend project for

critique.

